论文部分内容阅读
符合学习者特征的学习资源对于提高协作学习效率具有重要的影响。但是传统的学习资源推荐,没有充分考虑学习者、学习资源的特征和高效的推荐算法。针对上述问题,提出了基于协同过滤的学习资源推荐算法,根据学习者学习特征、学习资源特征和学习者对学习资源历史评价信息,采用协同过滤推荐算法,实现学习资源推荐。首先,通过学习者特征和学习资源的评分,寻找相似学习者并计算学习资源预测评分,然后根据该评分值和学习资源与学习者匹配度推荐学习资源,从而为学习者推荐符合自己兴趣爱好最合适的学习资源。实验结果表明该算法在个性化学习资源推荐