论文部分内容阅读
熔融沉积成形(FDM)是快速成型(RP)最有发展前途的工艺之一,掌握提高成形件精度的控制方法是推广其应用的重要途径。在分析FDM成形件精度影响因素的基础上,提出应用误差反向传播(BP)神经网络建立预测精度模型的方法。将主要影响因素作为BP神经网络模型的输入参数,并根据最小预测误差选择输入层和中间层的维数,确定了BP模型结构。利用多组实验数据进行模型训练,建立了BP神经网络模型。模型预测与实验测量的对比结果表明,模型的预测误差在6%以内,具有很高的预测精度,可以指导实际应用。