【摘 要】
:
在这篇注记中,我们利用群的射影极限性质证明了广义四元数群的Coleman外自同构群或者是1或者是一个初等阿贝尔2-群.
【机 构】
:
青岛大学数学与统计学院 青岛266071
论文部分内容阅读
在这篇注记中,我们利用群的射影极限性质证明了广义四元数群的Coleman外自同构群或者是1或者是一个初等阿贝尔2-群.
其他文献
设H是无限维复Hilbert空间,B(H)表示H上的有界线性算子全体构成的集合.本文对B(H)中使得f(T)满足Weyl定理的算子进行刻画,其中f是T的谱集的某个邻域上的解析函数.同时,也对算子函数的Weyl定理及算子Weyl定理的摄动之间的关系进行了讨论.
Let H be a complex Hilbert space and B(H) the algebra of all bounded linear operators on H.An operator A is called the truncation of B in B(H) if A =PABPA*,where PA and PA* denote projections onto the closures of R(A) and R(A*),respectively.In this paper,
In this paper,we propose a new class of non-self mappings called p-proximal α-η-β-quasi contraction,and introduce the concepts of α-proximal admissible mapping with respect to η and (α,d) regular mapping with respect to η.Based on these new notions,we stu
By combined power evolution laws of the spectral parameter and the initial constants of integration,a new differential-difference hierarchy is presented from the Toda spectral problem.The hierarchy contains the classic Toda lattice equation,the nonisospec
在自仿测度谱与非谱问题的研究中,由两元素数字集确定的迭代函数系是最简单且最重要的情形.一维情况对应Bernoulli卷积,其谱与非谱问题是已知的,而高维尤其是二维情形还未完全确定.有猜想表明:平面中遗留的情形均对应于非谱自仿测度.针对这种情况,本文首先获得了判定两元素数字集所对应平面自仿测度非谱性的一类条件,并在一种条件下得到正交指数函数系中元素个数的最佳上界.其次给出了所得结果的应用,并举例说明了该类条件的有效性.
The first purpose of this paper is to study the properties on some q-shift difference differential polynomials of meromorphic functions,some theorems about the zeros of some q-shift difference-differential polynomials with more general forms are obtained.
The aim of this paper is to establish the necessary and sufficient conditions for the compactness of fractional integral commutator[b,Iγ]which is generated by fractional integral Iγ and function b ∈ Lipβ (μ) on Morrey space over non-homogeneous metric mea
本文在部分双曲动力系统中定义了Borel概率测度的不稳定局部熵.为了刻画不稳定局部熵的重分形谱,引入不稳定(q,μ)-熵的概念,给出不稳定(q,μ)-熵的基本性质,并建立了不稳定局部熵重分形谱的Bowen不稳定熵与(q,μ)-熵之间的关系式.