论文部分内容阅读
k-means算法原理简单、收敛速度快,但易陷入局部最优,且须将聚类的类簇数作为先验知识,为此,引入量子微粒群与k-means算法结合,提出了一种改进的动态聚类算法。改进算法具有量子微粒群的全局搜索能力,且对每个粒子采用k-means进行优化,从而加快算法的收敛速度。通过适应度函数值的调整,算法在聚类中能够搜寻到最优类簇数,这样类簇个数和中心就不受主观因素的影响。实验表明,算法有效。