论文部分内容阅读
Real-time video transport over wireless Internet faces many challenges due to the heterogeneous environment including wireline and wireless networks. A robust network condition classification algorithm using multiple end-to-end metrics and Support Vector Machine (SVM) is proposed to classify different network events and model the transition pattern of network conditions. End-to-end Quality-of-Service (QoS) mechanisms like congestion control, error control, and power control can benefit from the network condition information and react to different network situations appropriately. The proposed network condition classifica- tion algorithm uses SVM as a classifier to cluster different end-to-end metrics such as end-to-end delay, delay jitter, throughput and packet loss-rate for the UDP traffic with TCP-friendly Rate Control (TFRC), which is used for video transport. The algorithm is also flexible for classifying different numbers of states representing different levels of network events such as wireline congestion and wireless channel loss. Simulation results using network simulator 2 (ns2) showed the effectiveness of the proposed scheme.
A robust network condition classification algorithm using multiple end-to-end metrics and Support Vector Machine (SVM) is proposed to classify different network events and model the transition pattern of network conditions. End-to-end Quality-of-Service (QoS) mechanisms like congestion control, error control, and power control can benefit from the network condition information and react to different network situations appropriately. network condition classifica- tion algorithm uses SVM as a classifier to cluster different end-to-end metrics such as end-to-end delay, delay jitter, throughput and packet loss-rate for the UDP traffic with TCP- friendly Rate Control (TFRC ), which is used for video transport. The algorithm is also flexible for classifying different numbers of states representing different levels of network events s uch as wireline congestion and wireless channel loss. Simulation results using network simulator 2 (ns2) showed the effectiveness of the proposed scheme.