论文部分内容阅读
In order to characterize the metallic-oxide grayscale films fabricated by laser direct writing (LDW) in indium film, a new method with micro-Raman spectroscopy and atomic force microscope (AFM) is proposed. Raman spectra exhibit the characteristic band of In2O3 centered at 490 cm -1 , in which the intensities increase with the decreasing optical density of the In-In2O3 grayscale films. The mapping information of Raman spectra shows that the signal intensities of the film in the same grayscale area are uniform. Combining with the information of In-In2O3 grayscale film from AFM, the quantitative relationship between the concentration of In2O3 and the Raman signal intensity is shown. Compared with the conventional methods, the resolution of micro-Raman scattering method is appropriate, and the scanning speed is proper to analyze the structure of metallic-oxide grayscale films.
In order to characterize the metallic-oxide grayscale films fabricated by laser direct writing (LDW) in indium film, a new method with micro-Raman spectroscopy and atomic force microscope (AFM) is proposed. Raman spectra exhibit the characteristic band of In2O3 centered at 490 cm -1, in which the intensities increase with the decreasing optical density of the In-In2O3 grayscale films. The mapping information of Raman spectra shows that the signal intensities of the film in the same grayscale area are uniform. Combining with the information of Compared with the conventional methods, the resolution of micro-Raman scattering method is appropriate, and the scanning speed is proper to analyze the In-In2O3 grayscale film from AFM, the quantitative relationship between the concentration of In2O3 and the Raman signal intensity is shown. structure of metallic-oxide grayscale films.