【摘 要】
:
Photobiomodulation, by utilizing low-power light in the visible and near-infrared spectra to trigger biological responses in cells and tissues, has been considered as a possible therapeutic strategy for Alzheimer\'s disease (AD), while its specific mech
【机 构】
:
State Key Laboratory of Oncogenes and Related Genes,Shanghai Cancer Institute,Med-X Research Institu
论文部分内容阅读
Photobiomodulation, by utilizing low-power light in the visible and near-infrared spectra to trigger biological responses in cells and tissues, has been considered as a possible therapeutic strategy for Alzheimer\'s disease (AD), while its specific mechanisms have remained elusive. Here, we demonstrate that cognitive and memory impairment in an AD mouse model can be ameliorated by 1070-nm light via reducing cerebral β-amyloid (Aβ) burden, the hallmark of AD. The glial cells, including microglia and astrocytes, play important roles in Aβ clearance. Our results show that 1070-nm light pulsed at 10 Hz triggers microglia rather than astrocyte responses in AD mice. The 1070-nm lightinduced microglia responses with alteration in morphology and increased colocalization with Aβ are sufficient to reduce Aβ load in AD mice. Moreover, 1070-nm light pulsed at 10 Hz can reduce perivascular microglia and promote angiogenesis to further enhance Aβ clearance. Our study confirms the important roles of microglia and cerebral vessels in the use of 1070-nm light for the treatment of AD mice and provides a framework for developing a novel therapeutic approach for AD.
其他文献
The fabrication of small-scale electronics usually involves the integration of different functional materials. The electronic states at the nanoscale interface plays an important role in the device performance and the exotic interface physics. Photoemissi
Broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are in great demand for many potential applications. In this paper, we first analyse the coupling resonances in a Ti/Ge/Ti three-layer absorber, which can
Carbon dots (CDs) have received immense attention in the last decade because they are easy-to-prepare, nontoxic, and tailorable carbon-based fluorescent nanomaterials. CDs can be categorized into three subgroups based on their morphology and chemical stru
Optical microcavities play a significant role in the study of classical and quantum chaos. To date, most experimental explorations of their internal wave dynamics have focused on the properties of their inputs and outputs, without directly interrogating t
Optical coherence tomography (OCT) is a widely used non-invasive biomedical imaging modality that can rapidly provide volumetric images of samples. Here, we present a deep learning-based image reconstruction framework that can generate swept-source OCT (S
Short Bio: Dr., Prof. John Dudley received his Ph.D. from the University of Auckland and is currently a Pro-fessor at the University of Franche-Comté in Besan?on, France. He is a Fellow of OSA, SPIE, IEEE, EOS, and an Honorary Fellow of the Royal Society
A nonlinear hologram enables to record the amplitude and phase of a waveform by spatially modulating the second order nonlinear coefficient, so that when a pump laser illuminates it, this waveform is reconstructed at the second harmonic frequency. The con
The intra-cavity electro-magnetic field distribution in a microdisk resonator can be visualised by inducing a phase shift via a scanning probe beam.
The apparent increase in hormone-induced cancers and disorders of the reproductive tract has led to a growing demand for new technologies capable of detecting endocrine disruptors. However, a long-lasting challenge unaddressed is how to achieve ultrahigh
Highly sensitive force measurements of a single microscopic particle with femto-Newton sensitivity have remained elusive owing to the existence of fundamental thermal noise. Now, researchers have proposed an optically controlled hydrodynamic manipulation