ACPSO—SVR结合的非线性建模预测算法研究

来源 :电子设计工程 | 被引量 : 0次 | 上传用户:liucm001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
提出一种基于自适应混沌粒子群优化和支持向量机结合的非线性预测建模算法(ACPSO—SVR),引入ACPSO启发式寻优机制对SVR模型的超参数进行自动选取,在超参数取值范围变化较大的情况下,效果明显优于网格式搜索算法。选取UCI机器学习数据库中的Forestfires标准数据集进行测试,实验结果表明该方法具有较高的精度和良好的泛化能力.对于解决多变量的回归预测问题是一种有效的方法。最后给出了混合算法在碳一多相催化领域的两种典型应用.在反应动力学模型未知的情况下建立催化剂组份模型和操作条件模型,以及基于混合算
其他文献
To understand the deformational behaviours of geosynthetics-reinforced soil retaining walls(GRS RWs),a series of plane-strain shaking table tests was conducted