磁性纳米Fe3O4@C对SBR脱氮除磷性能及其微生物种群组成的影响

来源 :环境科学学报 | 被引量 : 0次 | 上传用户:ahdx2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为探究磁性纳米Fe3O4@C对序批式活性污泥反应器(SBR)污水处理系统脱氮除磷性能的影响,建立了 2个相同的SBR(编号分别为0号和1号),其中,0号反应器未投加任何磁性材料(对照组),1号反应器中投加0.5 g·L-1的Fe3O4@C(实验组),并采用高通量测序和实时定量PCR(qPCR)技术对2个反应器内生物种群结构及关键脱氮除磷功能菌群进行分析.结果表明:①Fe3O4@C对SBR除污性能有显著影响,其中,1号反应器化学需氧量(COD)的去除性能得到增强,24 d后去除率稳定在90%左右;0号和1号反应器总氮(TN)平均去除率分别为35.83%和52.18%;从第43 d起,1号反应器除磷性能明显高于0号反应器,运行70 d后,0号和1号反应器对总磷(TP)的平均去除率分别为47.52%和56.33%.②添加Fe3O4@C材料后,反应器内变形菌门(Proteobacteria)的相对丰度从23.91%增加至32.14%,优势脱氮菌门Planctomycetes、Nitrospirae的相对丰度分别从2.66%、0.46%增加至5.16%、2.23%.③添加Fe3O4@C后,SBR内细菌总数明显增多,16S基因拷贝数从1.77×107 copies·g-1增长到4.21×107 copies·g-1;各功能菌数量也有大幅度增长,除磷功能基因PAO增加了 3.4倍,脱氮功能基因nirS、Nitrospira、Nitrobacter、AOB分别增长了 2.3、2.4、4.7和572倍.研究表明,磁性纳米Fe3O4@C能有效促进SBR脱氮除磷性能,可为SBR工艺的优化改进提供理论支撑.
其他文献
通过静电纺丝制备了Fe和N掺杂改性的碳纳米纤维(Fe-N-CNF),研究了该催化剂活化过一硫酸盐(PMS)降解双酚A(BPA)的性能.以聚丙烯腈为前驱体通过添加FeCl3、尿素、NH4Cl、均苯四甲酸二酐等配制溶胶进行静电纺丝,预氧化并高温碳化后获得Fe-N-CNF,研究了Fe-N-CNF投加量、PMS投加量、溶液初始pH对BPA降解效果的影响.结果表明,当Fe-N-CNF投加量为1 g·L-1,PMS投加量为2 mmol·L-1
目的探讨腹横肌松解术(TAR)在巨大腹壁疝修补中的应用价值。方法采用回顾性描述性研究方法。收集2017年1月至2020年1月首都医科大学附属北京朝阳医院收治的72例巨大腹壁疝病人临床资料;男47例,女25例;中位年龄为56岁,年龄范围为29~79岁。病人选择TAR行腹壁缺损修补,同时使用聚丙烯补片行腹膜前-肌后间隙加强修补。观察指标:(1)手术情况。(2)术后并发症情况。(3)疝相关生命质量情况。
以稻草秸秆为原料,分别通过水热炭化和热解炭化制备生物质炭(分别记为RS-HC和RS-BC),并采用不同的洗涤剂(蒸馏水、乙醇、四氢呋喃)对水热炭进行洗涤,分别记为RS-HC1、RS-HC2
为了提高羟基磷灰石(HAP)的除氟效果,采用化学沉淀法合成3种不同Al/Ca值的Al13改性后的HAP吸附材料,并对其进行XRD、FTIR、SEM、BET等表征,考察吸附过程中pH的影响,同时通过吸附热力学、吸附动力学等探讨了其除氟性能.结果表明,Al13-HAP材料比HAP更加疏松多孔,当Al/Ca=0.7时,比表面积增大到了137.2 m2·g-1,孔容增大到0.8217 cm3·g
利用四电极电化学传感器开展大气NO_2和O_3监测研究.为解决温度和湿度对传感器响应的影响问题,提出了一种具有温湿度补偿与零点校正功能的大气NO_2和O_3测量结果校准模型,通过活性炭吸附特性获得干净的背景气体,实现传感器准确的零点校正,并利用实验系统实测数据结合多元线性回归方法获得校准模型参数.首先对传感器线性响应特性进行了测试,发现O_2和O_3的测量灵敏度分别为3.889 ppbv·mV~(
采用溶胶凝胶法制备了 BiOCl/TiO2复合催化剂,透射电镜(TEM)照片显示,两种半导体分布均匀、相互连接,形成的异质结可以为电子传导提供有效通道.经过氯化处理的复合材料具备更
微塑料(Microplastics, MPs)在水环境中可以作为重金属载体,对金属离子的迁移和毒性效应产生较大影响.本文开展了紫外光老化后的聚丙烯(Polypropylene, PP)和聚乙烯(Polyethylene, PE)对两种重金属离子Cu2+和Zn2+在单一和二元复合体系中的吸附行为研究.通过拟一级和拟二级动力学模型研究发现,微塑料对重金属离子的吸附过程更符合拟二级动力学过程,利用Langmuir模型和Freundlich模型对吸附等温线结果进行拟合,
为了解决外源杂原子掺杂到碳基相催化剂过程中掺杂量低和分布不均的问题,本研究通过直接碳化聚吡咯(PPy)和聚噻吩(PTh)混合物制备得到硫氮共掺杂碳基催化材料(CPPy-PTh),并研究其活化过一硫酸盐(PMS)降解水中的2,4-二氯苯酚(2,4-DCP)的性能.结果表明,CPPy-PTh催化PMS可在30 min内降解99%的2,4-DCP.CPPy-PTh的高效催化能力主要是因为其表面被石墨化和氮、硫官能化,这使得PMS更容易在CPPy-PTh表面传递电子.淬灭实验和电子顺磁共振(EPR)结果表明,2,
碳材料由于良好的稳定性、无二次污染、高的比表面积等特性,近年来作为催化剂广泛应用于水处理领域.本文以金属有机骨架(MOFs)材料作为前驱体,通过“静电纺丝+热解”的方法制备了硼-氮共掺杂的中空碳纳米纤维(B-HCNFs),并利用X射线光电子能谱仪(XPS)、拉曼光谱仪(Raman)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、氮气吸附仪等对制备材料的组成和结构进行了详细的分析.将合成的B-HCNFs用于催化剂活化过一硫酸盐(peroxymonosulfate, PMS)降解双酚A(BPA),结