论文部分内容阅读
训练数据中的噪声数据对文本分类结果的精度会造成不良影响,本文提出了一种对噪声数据进行修正的快速算法。针对以前的算法,每次迭代只对一个文档进行修正,迭代次数与噪声数据数量相当,算法运行效率较低的问题,本文通过分析调整文档所属类别对评价指标的影响,提出依据模块度变化量判断噪声数据,一次迭代过程中可以对多个文档进行修正处理,从而提高算法效率。实验结果表明,本文所提算法能够更快地修正粗分类数据中的噪声,算法复杂度从以前算法的O(Tnm^2)降低为O(Tnm)。该算法可以用于对大数据量数据进行处理,实用价值更高。