论文部分内容阅读
真题再现1(湖北理科卷第5题)已知0<θ<π4,则双曲线C1:x2/cos2θ-y2/sin2θ=1与C2:y2/sin2θ-x2/sin2θtan2θ=1的A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等新在哪里本题的新颖之处在于以双曲线为载体考查同角三角函数间的关系以及三角恒等变换.难度系数0.70解答过程据题意可知,双曲线C1的离心率e1=1/cosθ,双曲线C2的离心率e2=
True Reproduction 1 (Hubei Science Volume 5) Known 0 <θ <π4, the hyperbola C1: x2 / cos2θ-y2 / sin2θ = 1 and C2: y2 / sin2θ-x2 / sin2θtan2θ = 1 of the real axis Length equal B. Virtual axis length equal C. Focal length D. Centrifugal rate equal to the new where the novel hyperbolic as a carrier to examine the relationship between the trigonometric trigonometric functions and the triangular equivalent transform degree of difficulty 0.70 solution process It is understood that the eccentricity e1 of hyperbolic C1 = 1 / cosθ, eccentricity e2 of hyperbola C2 =