论文部分内容阅读
本文针对基于Moore-Penrose广义逆实现的联想存储模型(如Kohonen模型、Murakami模型)缺乏对已存数据完全的联想回忆能力和非线性映射能力,通过在这些模型中引入一个扩展层(隐节点层)使原模型人具有对已存数据的完全回忆能力和一定的非线性映射能力,通过矩阵的奇异值分解,从理论上阐明了改进模型的性能优越性,模拟结果证实了这一点。