论文部分内容阅读
提出了基于核主元分析和Fisher判别分析相结合的非线性统计过程监控和故障诊断新方法.该方法首先利用非线性核函数将数据从原始空间映射到高维空间,然后在高维空间中利用线性Fisher判别分析法提取数据最优的核Fisher判别矢量和特征矢量,通过计算特征矢量之间的欧式距离来实现过程监控.若系统发生故障,则根据当前故障的判别矢量和历史故障数据集中所含故障的最优核Fisher判别矢量的相似度进行故障诊断.所提出的方法能有效的捕获过程变量之间的非线性关系,汽轮机特征故障数据集仿真试验验证了该方法的有效性.