论文部分内容阅读
目的基于MRI平扫T2WI和增强T1WI的影像组学特征值,探讨机器学习模型随机森林(random forest,RF)对子宫内膜癌肌层浸润深度预测价值。材料与方法回顾性分析行盆腔MRI平扫及增强检查并经手术病理证实为子宫内膜癌患者的影像资料114例(ⅠA期86例,ⅠB期28例),以4∶1的比例通过分层抽样的方法分为训练集和测试集。采用ITK-SNAP软件分别在矢状面平扫T2WI图像及多期增强T1WI图像第二时相进行手动逐层勾画ROI,分别对T2WI和增强T1WI数据集进行影像组学特征值提取(https:/