论文部分内容阅读
以聚阴离子多肽(聚谷氨酸钠)控制合成了微孔二氧化硅空心球.在合成过程中,以3-氨丙基三甲氧基硅烷(APMS)和正硅酸乙酯(TEOS)为硅源,聚谷氨酸钠为模板.硅源与阴离子多肽模板之间的组装依照以阴离子表面活性剂为模板剂组装合成介孔二氧化硅的机理,即S-N+-I-机理,其中S表示阴离子多肽,I表示TEOS,N表示共结构导向剂APMS.组装过程中质子化的APMS与阴离子多肽之间形成静电相互作用,同时,AMPS和TEOS共同水解聚合形成围绕阴离子多肽模板的二氧化硅骨架,多肽的二级结构为微孔孔道的模板.以阴离子多肽为模板可以在不同的实验条件下控制微孔纳米空心球,微孔亚微米空心球和实心球形貌的合成.在生物矿化过程中,阴离子多肽往往控制碳酸钙或磷酸钙的沉积,而我们的实验结果表明,在适当的硅源存在下,阴离子多肽也可以诱导二氧化硅的沉积.
Microporous silica hollow spheres were synthesized with polyanionic peptides (polyglutamic acid sodium), and 3-aminopropyltrimethoxysilane (APMS) and tetraethylorthosilicate (TEOS) Source and polyglutamic acid as template.The assembly of silicon source and anionic polypeptide template was based on the mechanism of synthesizing mesoporous silica by using anionic surfactant as template, namely, S-N + -I- mechanism, in which S Represents an anionic polypeptide, I represents TEOS and N represents a co-structural directing agent APMS An electrostatic interaction between a protonated APMS and an anionic polypeptide is formed during the assembly process while AMPS and TEOS are hydrolytically polymerized to form silica surrounding the anionic polypeptide template Backbone and polypeptide secondary structure of microporous pore template.Using anionic peptide as template can control the synthesis of microporous hollow nanospheres, microporous hollow microspheres and solid spherical topography under different experimental conditions.In the bio-ore Anionic peptides tend to control the deposition of calcium carbonate or calcium phosphate during the chemical process, and our experimental results show that the anionic polypeptide can also induce the deposition of silica in the presence of a suitable source of silicon.