论文部分内容阅读
针对原始标记传播算法迭代次数过多和阈值选取的不确定性等问题,提出一种改进的标记传播算法,并将其应用于基因表达谱数据分析。首先将高维基因表达谱数据表示为权值矩阵,同时定义一个表示样本类别属性的标记序列,并将其中少量样本标记为已知;然后利用根据Gauss-Seidel迭代算法推导出的迭代公式更新标记序列,并证明标记序列的解的收敛性;最后采用正负标记的方式,根据标记序列各分量的符号差异实现数据类别的划分。通过白血病和结肠癌数据集实验,证明了本文方法的有效性。