论文部分内容阅读
Full-annulus three-dimensional unsteady numerical simulations were conducted for a low-speed isolated axialcompressor rotor, intending to identify the behavior of self-induced unsteady tip leakage flow within multi-bladepassages. There is a critical mass flow rate near stall point, below it, the self-induced unsteadiness of tip leakageflow can propagate circumferentially and thus initiates two circumferential waves. Otherwise, the self-inducedunsteady tip leakage flow oscillates synchronously in each single blade passage. The major findings are: 1) whilethe self-induced unsteadiness of tip leakage flow is a single-passage phenomenon, there exist phase shifts amongblade passages in multi-passage environments then evolving into the first short length wave propagating at abouttwo times of rotor rotation speed after the transient period ends; and 2) the time traces of the pseudo sensors locatedon the rotor blade tips reveal another much longer length-scale wave modulated with the first wave due tophase shift propagating at about half of rotor rotation speed. Features of the short and long length-scale circumferentialwaves are similar to those of rotating instability and modal wave, respectively.
Full-annulus three-dimensional unsteady numerical simulations were conducted for a low-speed isolated axialcompressor rotor, intending to identify the behavior of self-induced unsteady tip leakage flow within multi-blade passages. There is a critical mass flow rate near stall point, below it, the self-induced unsteadiness of thus leakage-leakage can propagate circumferentially and thus initiates two circumferential waves. 的 中文 解释 _the self-inducingdunsteady tip leakage flow oscillates synchronously in each single blade passage. The major findings are: 1) while the self-induced unsteadiness of tip leakage flow is a single-passage phenomenon, there exist phase shifts amongblade passages in multi-passage environments then evolving into the first short length wave propagating at abouttwo times of rotor rotation speed after the transient period ends; and 2) the time traces of the pseudo sensors locatedon the rotor blade tips reveal another much longer length-scale wave modulated with the first wav e due tophase shift propagating at about half of rotor rotation speed. Features of the short and long length-scale circumferential waves are similar to those of rotating instability and modal wave, respectively.