论文部分内容阅读
利用RBF神经网络,建立了阿拉尔垦区需水量预测模型。选取农业用水灌溉定额、工业用水重复利用率、城镇生活人均日需水量、农村生活人均日需水量作为模型输入,农业、工业、城镇生活、农村生活需水量作为输出。将2001—2007年用水量数据作为训练样本,用2008—2009年用水量数据对模型进行检验。在农业、工业、城镇生活、农村生活4类需水量中,2009年工业需水量预测的相对误差最大,为-16.24%,总需水量的最大误差仅为1.80%,取得了较满意的结果,表明RBF神经网络模型用于该区需水量预测是可行的。