论文部分内容阅读
提出一种基于主动学习SVM分类器的视频分类算法.该算法分为两个步骤:首先分析并提取与视频类型有关的十维底层视觉特征;然后用SVM分类器建立这些底层特征与视频类型之间的联系.在获取SVM分类器所需的训练样本时,采用主动学习的方法选择对SVM分类器最“有用”的样本提供给用户进行标注,用更少的训练样本获得与大量训练样本近似的分类效果,从而减轻用户标注负担.针对多类SVM分类的主动学习问题,提出用后验概率计算分类器对未标注样本的置信度进行样本选择.实验结果表明,主动学习算法与随机采样标注的被动学习算法相比,在相同