论文部分内容阅读
The computational lfuid dynamics (CFD) code, FLUENT, was used to simulate the liquid-phase FCC diesel hy-drotreating tubular reactor with a ceramic membrane tube dispenser. The chemical reaction and reaction heat were added to the model by user-deifned function (UDF), showing the distribution of temperature and content of sulifdes, nitrides, bicyclic aromatics and monocyclic aromatics in different parts of the reaction bed. When the pressure was 6.5 MPa, the amount of mixing hydrogen was 0.84% (m), the space velocity was 2 h-1 and the inlet temperature was 633K, the temperature reached a maximum at a height of 0.15 m, and the range of radial temperature reached its maximum (2.5 K) at a height of 0.15 m. It indicated that the proper ratio of height to diameter of catalyst bed in the tubular reactor was 5-6. The increase of inlet temperature, the mixing hydrogen and the decrease of space velocity led to the decrease in the content of bicyclic aromatics, sulifdes and nitrides, and the increase in monocyclic aromatics content, while the high temperature increased. The results were in good agreement with experimental data, indicating to the high accuracy of the model.