论文部分内容阅读
利用水热合成技术,通过改变掺杂稀土离子的种类、掺杂浓度及添加剂的种类可实现LaPO4纳米结构材料形貌及物相的调控,同时还研究了合成材料的光致发光性能.结果表明:Ce3+离子掺杂浓度的增加可导致LaPO4纳米棒发生由单斜相向六方相的转变,而Tb3+离子掺杂浓度增加到相同的范围则不能够引起该相转变的发生;具有较小尺寸的LaPO4纳米棒易于“肩并肩”聚集形成纳米棒束;改变掺杂稀土离子的种类和浓度可调控纳米棒束的长度(150 nm~2.0μm),但对纳米棒束的直径影响不大(40~60 nm);添加剂的加入使纳米棒束更均一,对其相结构则基本没有影响;在紫外光激发下,单掺杂Ce3+或Tb3+离子的LaPO4纳米棒束分别表现出Ce3+或Tb3+离子的特征发射,由于Ce3+,Tb3+离子间存在有效的能量传递,Ce3+,Tb3+离子共掺杂的LaPO4纳米棒束表现出较强的Tb3+离子的绿光发射.
Hydrothermal synthesis technology can be used to control the morphology and phase of LaPO4 nanostructured materials by changing the types of doping rare earth ions, doping concentration and types of additives, and the photoluminescence properties of the synthesized materials have also been studied. : The increase of doping concentration of Ce3 + ions can lead to the transformation from monoclinic phase to hexagonal phase of LaPO4 nanorods, whereas the increase of Tb3 + doping concentration to the same extent can not cause the phase transition. LaPO4 with smaller size The nanorods are easy to assemble to form nanorod bundles “side by side”; the length and length of the nanorod bundles can be controlled by changing the types and concentrations of doped rare earth ions (150-2.0μm), but have little effect on the nanorods 40 ~ 60 nm). The addition of additives made the nanorod bundles more homogenous and had almost no effect on the phase structure. LaPO4 nanorod bundles with single or mixed Ce3 + or Tb3 + ions showed Ce3 + or Tb3 + ions , LaPO4 nanorod bundles co-doped with Ce3 + and Tb3 + ions show strong emission of Tb3 + ions due to the effective energy transfer between Ce3 + and Tb3 + ions.