论文部分内容阅读
轨迹聚类是城市交通数据挖掘的重点之一,交通轨迹聚类算法是按照一定的相似度指标将轨迹划分成若干个类簇。在复杂的路网环境下,针对目前如DTW、SDTW等相似度计算方法准确性不高的问题进行了研究,提出了一种划时区分段的动态时间规整算法(SDTW+)进行相似度计算。该算法充分考虑了轨迹形状因素,能有效提高准确性。实验部分利用不同相似度算法,并结合层次聚类算法对实际车辆轨迹进行聚类,最终以平均轮廓系数和聚类成功率为评价指标,判断不同相似度算法的聚类效果。实验结果表明,采用所提算法相对于采用DTW、SDTW的平