论文部分内容阅读
支持向量机(Support Vector Machines,简称SVM)根据有限的样本信息在对文本分类的精度和学习能力之间,相比其他的文本分类算法寻求了最佳折中,从而获得了较好的推广能力。而SVM是从线性可分情况下的最优分类面发展而来的,因此对于线性可分文本具有更好的分类效果。给出了一种效率较高的线性可分文本的SVM算法,它在训练的时间复杂度上具有明显的改进,从而可以提高训练效率。结果表明:改进后的SVM算法相比以前的算法大大提高了运行效率。