Fusing moving average model and stationary wavelet decomposition for automatic incident detection:ca

来源 :Journal of Traffic and Transportation Engineering(English Ed | 被引量 : 0次 | 上传用户:gkchenvip
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Traffic congestion is a growing problem in urban areas all over the world.The transport sector has been in full swing event study on intelligent transportation system for automatic detection.The functionality of automatic incident detection on expressways is a primary objective of advanced traffic management system.In order to save lives and prevent secondary incidents,accurate and prompt incident detection is necessary.This paper presents a methodology that integrates moving average(MA)model with stationary wavelet decomposition for automatic incident detection,in which parameters of layer coefficient are extracted from the difference between the upstream and downstream occupancy.Unlike other wavelet-based method presented before,firsdy it smooths the raw data with MA model.Then it uses stationary wavelet to decompose,which can achieve accurate reconstruction of the signal,and does not shift the signal transfer coefficients.Thus,it can detect the incidents more accurately.The threshold to trigger incident alarm is also adjusted according to normal traffic condition with congestion.The methodology is validated with real data from Tokyo Expressway ultrasonic sensors.Experimental results show that it is accurate and effective,and that it can differentiate traffic accident from other condition such as recurring traffic congestion. Traffic congestion is a growing problem in urban areas all over the world. Transport sector has been in full swing event study on intelligent transportation system for automatic detection. The functionality of automatic incident detection on expressways is a primary objective of advanced traffic management system. In order to save lives and prevent secondary incidents, accurate and prompt incident detection is necessary. This paper presents a methodology that integrates moving average (MA) model with stationary wavelet decomposition for automatic incident detection, in which parameters of layer coefficient are extracted from the difference between the upstream and downstream occupancy .Unlike other wavelet-based method presented before, firsdy it smooths the raw data with MA model.Then it uses stationary wavelet to decompose, which can achieve accurate reconstruction of the signal, and does not shift the signal transfer coefficients.Thus, it can detect the incidents more accurately.The threshol d to trigger incident alarm is also adjusted according to normal traffic condition with congestion. methodology. validated with real data from Tokyo Expressway ultrasonic sensors. Experimental results show that it is accurate and effective, and that it can differentiate traffic accident from other condition such as recurring traffic congestion.
其他文献
国标舞是丰富人们精神文化生活的重要艺术形式,本篇文章主要从国标舞在广西中小城市的发展现状入手,对国标舞在广西中小城市发展的趋势进行了探究 The national standard da
“别的区市还没想到的,市北已经想到了;别的区市刚想到的,市北已经开始做了;别的区市刚要动手做的,市北已经做成型了。”青岛市经贸委主任刘伟曾对市北区作出如是评价。上级
2016年金秋10月,在井冈山大学隆重举行了音乐舞蹈史诗《井冈山》的第200场演出。作为该剧舞美视频创作的主要成员,笔者很荣幸受邀观看演出,并引发了自己对该剧舞美视频创作的
内蒙古自治区兴安盟科右中旗财政局党总支书记、局长包桂珍用女性特有的韧性和担当,肩负起了财政“管家”这个神圣责任,用自己的原则、智慧和大爱书写了科右中旗财政改革和管
又到了一年一度的新生入园阶段,如何缓解幼儿入园焦虑是小班教师的共同话题。我们尝试用音乐来缓解幼儿入园焦虑,效果非常好。    一、用熟悉的音乐吸引孩子,缩小家园差距    陌生的环境是造成幼儿入园不适应的一个最大原因。如果幼儿到一个新的环境,其注意力能够被环境所吸引,那么他就容易适应这个环境,反之他就会选择拒绝并企图逃避。  因此,在孩子刚入园时,教师要努力营造孩子熟悉的环境。比如,如今的许多家长
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
近日,二十四节气的申遗工作引起了热议,在信息时代的浪潮汹涌而至的今天,传统文明不断消亡,因而,余存的这些老智慧也就显得弥足珍贵。可是,正如时代的铁蹄将踏破残旧的世界,这些传统文化是否具有现实意义呢?我认为,应该点亮老智慧的新光彩,用创新寻找它们蕴于深处的历久弥新的时代光辉。  有人认为,二十四节气是属于老祖宗的智慧,应全盘接受,以不忘前人之心;也有人认为,在信息时代,节气的农业指导作用减弱,不再具
以硫酸锌和碳酸钠为原料,采用微波诱导辐射的方法,固—固相反应制备纳米氧化锌。 Using zinc sulfate and sodium carbonate as raw materials, a microwave-induced radiat
《外科研究与新技术》的唯一在线投稿网址为http://www.srant.com。本网站功能包括作者投稿与查询、专家远程审稿、编辑在线加工处理稿件及发布编辑部公告。作者在线注册(仅