论文部分内容阅读
一、问题的引入:我们知道,用线性规划求二元函数的最值,关键是认清目标函数的几何意义,代数问题几何化.常见的目标函数有以下几种类型:(1)截矩型:z=ax+by,则y=-a/bx+z/b,当b>0时,y轴截距越大,z越大;当b<0时则相反;
First, the introduction of the problem: We know that using linear programming to find the most value of the binary function, the key is to recognize the geometric meaning of the objective function, algebraic problems geometric. Common objective function has the following types: (1) Type: z = ax + by, then y = -a / bx + z / b, when b> 0, the larger the y-axis intercept, the larger the z; the opposite when b <0;