论文部分内容阅读
针对汽轮发电机组的故障诊断,采用Levenberg-Marquardt算法建立多层前向人工神经网络,采用改进算法训练网络,克服了传统BP算法收敛速度慢,易陷入局部最小的缺陷.就BP网络的不足,提出了一种改进的BP神经网络模型,并使用L-M算法用于汽轮发电机组故障的诊断.经理论和实践证明:该方法有效地提高了故障诊断的精度和可靠度,为旋转机械故障诊断提供了有效方法.