论文部分内容阅读
局部线性嵌入是一种有效地非线性维数约减方法,它能保持降维后的数据与原空间有相同的拓扑关系。但是这种方法在降维处理、可视化以及数据分类方面应用不是很广泛,针对上述问题,提出了一种新的、有效的降维以及数据分类方法——基于最大边缘准则图形嵌入方法。该方法首先构建最近邻关系图聚合数据点之间的最近邻样本,同时最大化类间间隔,保证不同类之间数据可分性大,从而更好地实现数据分类。最后,该方法的有效性分别在ORL及Yale两大人脸库上得到了验证。