基于关键点估计的抓取检测算法

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:hukai001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
抓取是机器人在服务与工业领域中进行人机协调的重要能力,得到一个准确的抓取检测结果是机械臂能否完成抓取任务的关键.为了提高抓取检测的准确率以及实时性,提出了一种由CenterNet改进的基于关键点估计的抓取检测算法.在网络的特征提取层使用了特征融合方法融合不同的特征图,减少特征的丢失;增加了角度预测分支用来预测抓取角度;使用了改进的Focal Loss,减少由于正负样本不均衡导致的模型准确度降低.与基于锚框的抓取检测算法穷举目标潜在位置再进行回归的方式不同,基于关键点估计的抓取检测算法直接预测抓取关键点,并从关键点预测抓取框的尺寸、偏移量以及抓取角度.实验结果表明,与基于锚框的抓取检测相比,该方法更加高效、准确、简洁.在康奈尔数据集上,此模型达到了97.6%的准确率以及42 frame/s的检测速度.
其他文献
针对教与学优化算法易早熟,解精度低,甚至收敛于局部最优的问题,提出一种新的融合改进天牛须搜索的教与学优化算法.该算法利用Tent映射反向学习策略初始化种群,提升初始解质量.在“教”阶段,对教师个体执行天牛须搜索算法,增强教师教学水平,提高最优解的精确性.在“学”阶段,对学生个体进行混合变异,从而跳出局部最优,平衡算法的全局搜索与局部开发.通过benchmark测试函数和部分CEC2013函数在不同维度对算法进行仿真实验,并进行Wilcoxon秩和检验统计,证明了改进教与学优化算法的优越性.使用压力容器设计
音乐是表达情感的重要载体,音乐情感识别广泛应用于各个领域.当前音乐情感研究中,存在音乐情感数据集稀缺、情感量化难度大、情感识别精准度有限等诸多问题,如何借助人工智能方法对音乐的情感趋向进行有效的、高质量的识别成为当前研究的热点与难点.总结目前音乐情感识别的研究现状,从音乐情感数据集、音乐情感模型、音乐情感分类方法三方面进行梳理,列举当前可使用的公开数据集并对其进行简要概括,综合评判常见的音乐情感模型,针对不同模态总结不同的分类方法.最后对该领域当前问题及今后研究工作进行归纳概括,为后续进一步的研究提供思路
无线传感网络的节点采用时隙CSMA/CA协议获取信道并广播数据.为了度量信息广播的时效性,提出了广播信息年龄(broadcast age of information,bAoI)的概念.广播信息年龄等于当前时刻减去刚刚广播成功的那个数据包的生成时刻.bAoI量化了每个节点的数据包的新鲜度,并且描述了节点在网络上快速广播数据包的能力.通过推导节点的传输概率和碰撞概率,建立了网络的等效传输模型.在此基础上研究和计算了网络的平均bAoI.通过仿真验证了平均bAoI随节点密度和到达率的变化规律.
区块截留攻击又称扣块攻击,是存在于区块链中的一种攻击方式,攻击者通过渗透进目标矿池中进行消极挖矿以达成破坏目标矿池的目的.简要介绍了挖矿机制和区块截留攻击的工作原理,总结了区块截留攻击的几种模型,并对现有的区块截留攻击模型的攻击方式和收益进行了研究,分析出其攻击效果.构造了一个在提升收益率的同时提升收益速度的区块截留攻击模型,通过仿真挖矿实验验证其所构造的模型,并围绕收益速度和收益率对典型模型和所构造模型进行对比和分析.基于实验的结果,给出了不同的攻击模型所适用的环境.
为了在复杂火场环境下获取消防员的精确位置,提出基于超宽带(ultra-wideband,UWB)的消防员室内协同定位算法,充分利用目标到UWB基站以及到其他目标的测距信息进行定位.采用线性拟合方式对测量距离中存在的标准偏差进行预处理;针对目标位置解算及非视距(non-line-of-sight,NLOS)误差缓解问题,提出基于偏移扩展卡尔曼滤波的协同定位算法,根据待定位目标之间的内在联系,建立新的状态方程和量测方程,并通过构造的系数矩阵调整卡尔曼增益,修正偏离的位置估计值;针对定位坐标跳变问题,提出基于阈
基于机器学习的僵尸网络流量检测是现阶段网络安全领域比较热门的研究方向,然而生成对抗网络(generative adversarial networks,GAN)的出现使得机器学习面临巨大的挑战.针对这个问题,在未知僵尸网络流量检测器模型结构和参数的假设条件下,基于生成对抗网络提出了一种新的用于黑盒攻击的对抗样本生成方法.该方法提取网络流量的统计特征,利用生成对抗网络思想,通过训练替代判别器和生成器,来拟合不同类型的黑盒僵尸网络流量检测器和生成可以规避黑盒僵尸网络流量检测器的对抗样本.生成的对抗样本是在原始
针对许多检测模型受到数据不平衡和异常数据的复杂性等因素影响问题,提出一种以生成对抗网络(gener-ative adversarial network,GAN)为基础的数据异常检测方法.该方法利用InfoGAN网络训练生成正常数据和异常数据,构造一个推理神经网络作为生成数据与原始数据的标签生成器,之后利用第二个GAN网络对推理网络精调,保证生成的样本和其标签对应;最后将生成样本与标签输入随机森林分类,通过Hyperband算法寻找随机森林最优超参,对推理网络进一步优化.在四个真实数据集上与五种传统机器学习
针对单一模态情感识别精度低的问题,提出了基于Bi-LSTM-CNN的语音文本双模态情感识别模型算法.该算法采用带有词嵌入的双向长短时记忆网络(bi-directional long short-term memory network,Bi-LSTM)和卷积神经网络(convolutional neural network,CNN)构成Bi-LSTM-CNN模型,实现文本特征的提取,将其与声学特征融合结果作为联合CNN模型的输入,进行语音情感计算.基于IEMOCAP多模态情感检测数据集的测试结果表明,情感识
运动想象识别将大脑的神经活动信号转为编码输出以实现意念控制,是脑机接口的一个重要研究方向.近年来深度学习算法的应用进一步提高了运动想象识别的准确率,但是当前基于深度学习的运动想象分析都将多路脑电信号作为二维矩阵信号,忽视了不同节点的空间关联信息.为了解决这个问题,将图卷积网络算法应用到运动想象分类中,通过多个节点脑电信号的相关系数建立脑电图结构,提取脑电信号的时频域特征信息作为输入,再经过图卷积网络进行节点特征聚合以学习谱域特征,最后通过全连接层输出分类结果.该方法在BCI Competition IV
近年来针对合成孔径雷达(synthetic aperture radar,SAR)图像中缺乏颜色和纹理细节的舰船检测技术在深度学习领域中得到了广泛研究,利用深度学习技术可以有效避免传统的复杂特征设计,并且检测精度得到极大改善.针对舰船目标检测框具有高长宽比和密集排列问题,提出一种基于改进YOLOv5的目标检测方法.该方法针对舰船目标检测框特点将检测框长宽作为参数进行综合考虑并对损失函数进行曲线优化,并结合坐标注意力机制(coordinate attention,CA),在模型轻量化的同时实现对舰船目标检测