论文部分内容阅读
随着大规模图像分类数据集的出现,设计一种可扩展的、高效的多类分类算法成为目前一个重要的挑战。基于迹范数正则惩罚函数,提出了一种新的大规模多类图像分类的可扩展学习算法。把具有挑战性的非光滑优化问题重构为一个带l1正则惩罚的无穷维优化问题,进而设计了一个简单而有效的加速坐标下降算法。展示了如何在量化的密集视觉特征的压缩域中进行高效的矩阵计算,该压缩域有100000个例子,1000多维特征和100多类图片。在图像网的子集“Fungeus”,“Ungulate”和“Vehicles”上的实验结果表明,提出方法的性