论文部分内容阅读
针对离散非线性系统盲辨识问题,提出了一种基于循环平稳输入的非线性系统盲辨识方法。利用循环平稳输入信号的一阶统计特性和Hammerstein-Wiener模型非线性部分的逆映射,将有输入信号的辨识过程转变为无输入信号的辨识过程。介绍了Hammerstein-Wiener模型的结构及循环平稳输入的统计特性,对盲辨识算法机理进行了阐述。仿真结果表明该方法在解决一类离散非线性系统盲辨识问题上的切实可行性。
Aiming at the problem of blind identification of discrete nonlinear systems, a blind identification method of nonlinear system based on cyclostationary input is proposed. Using the first-order statistics of the cyclostationary input signal and the inverse mapping of the non-linear part of the Hammerstein-Wiener model, the recognition process with input signal is transformed into the identification process without input signal. This paper introduces the structure of Hammerstein-Wiener model and the statistic characteristics of cyclostationary input, and expounds the algorithm of blind identification. The simulation results show that this method is feasible in solving the blind identification problem of a class of discrete nonlinear systems.