论文部分内容阅读
大数据时代,数据的共享与挖掘存在隐私泄露的安全隐患。针对使用K-匿名隐藏实现隐私保护会大幅降低数据分类挖掘性能问题,提出一种基于随机森林特征重要性的K-匿名特征选择算法(RFKA)用于分类挖掘。使用随机森林特征重要性度量特征的分类性能;采用前向序列搜索策略每次选择不破坏K-匿名且分类性能最大的特征加入特征子集;使用特征子集对应的数据集构建模型进行分类实验。实验结果表明,该算法能更有效地平衡K-匿名和分类挖掘性能,且算法运行效率更高。