论文部分内容阅读
根据政务信息资源的特点,提出了一种新的政务本体学习模型。首先通过命名实体获取领域概念,然后利用粗糙集和模糊聚类理论对模式匹配算法进行改进,进而采用改进的模式匹配算法获取领域概念之间的显式和隐式关系。大量的实践证明:利用该模型能够从庞大的政务信息资源中有效地进行政务本体学习,克服了传统模式匹配算法不能很好地获取概念之间隐式关系的问题。