论文部分内容阅读
鉴于支持向量机(SVM)的优越性及汽车发动机的故障特点,本文提出将支持向量机应用到发动机故障的智能诊断中。该方法专门针对小样本集合设计,能够在小样本情况下获得较大的推广能力,而且模型简单。首先对采集的故障信号采取信息融合方式进行特征提取,以获得特征向量。,在此基础上通过多分类支持向量机对发动机故障进行分类测试,建立了故障诊断模型。试验结果表明:该方法具有较高的诊断精度,达到了发动机的故障诊断要求。