论文部分内容阅读
传统的深度学习阴影去除方法常常会改变非阴影区域的像素且无法得到边界过渡自然的阴影去除结果。为了解决该问题,基于生成对抗网络(GAN)提出一种新颖的多阶段阴影去除框架。首先,多任务驱动的生成器分别通过阴影检测子网和蒙版生成子网为输入图像生成相应的阴影掩膜和阴影蒙版;其次,在阴影掩膜和阴影蒙版的引导下,分别设计全影模块和半影模块,分阶段去除图像中不同类型的阴影;然后,以最小二乘损失为主导构建一种新的组合损失函数以得到更好的结果。与最新的深度学习阴影去除方法相比,在筛选数据集上,所提方法的平衡误差率(BE