Van der Waals two-color infrared photodetector

来源 :光:科学与应用(英文版) | 被引量 : 0次 | 上传用户:cjz1107
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
With the increasing demand for multispectral information acquisition, infrared multispectral imaging technology that is inexpensive and can be miniaturized and integrated into other devices has received extensive attention. However, the widespread usage of such photodetectors is still limited by the high cost of epitaxial semiconductors and complex cryogenic cooling systems. Here, we demonstrate a noncooled two-color infrared photodetector that can provide temporal-spatial coexisting spectral blackbody detection at both near-infrared and mid-infrared wavelengths. This photodetector consists of vertically stacked back-to-back diode structures. The two-color signals can be effectively separated to achieve ultralow crosstalk of~0.05%by controlling the built-in electric field depending on the intermediate layer, which acts as an electron-collecting layer and hole-blocking barrier. The impressive performance of the two-color photodetector is verified by the specific detectivity (D*) of 6.4 × 109 cm Hz1/2 W?1 at 3.5μm and room temperature, as well as the promising NIR/MWIR two-color infrared imaging and absolute temperature detection.
其他文献
Light:Science&Applications 11, 6 (2022)rnhttps://doi.org/10.1038/s41377-021-00694-4rnTwo-color infrared detection technology realizes target recognition in a complex environment by using the multi-spectral characteristics of the target. In the last decade
Matrix computation, as a fundamental building block of information processing in science and technology, contributes most of the computational overheads in modern signal processing and artificial intelligence algorithms. Photonic accelerators are designed
Continuous wave fiber laser created on the basis of silica glass negative curvature hollow core fiber filled with HBr make it possible to obtain efficient narrow linewidth mid-IR emission with a maximum laser power of about 500 mW at wavelength of 4200 nm
One of the most interesting directions in quantum simulations with ultracold atoms is the expansion of our capability to investigate exotic topological matter. Using sophisticated atom-light couplings in an atomic system, scientists have demonstrated seve
Bound states in the continuum are realized in many optical systems as“dark states”, and their presence can be detected in the regime of leaky modes via resonances in far-fields. Here the authors reveal previously unseen structure of bound states in the co
Nature Photonics (2022)rnhttps://doi.org/10.1038/s41566-021-00921-9rnThermal radiation is commonplace in our everyday life, exemplified by natural sunlight and infrared ther-mometers. When an object emits thermal radiation, a radiative cooling process car
Diffractive Deep Neural Network enables computer-free, all-optical“computational imaging”for seeing through unknown random diffusers at the speed of light.
Synthetic gauge fields in synthetic dimensions are now of great interest. This concept provides a convenient manner for exploring topological phases of matter. Here, we report on the first experimental realization of an atom-optically synthetic gauge fiel
The minimum spatial resolution of typical optical inspection systems used in the microelectronics industry is generally governed by the classical relations of Ernst Abbe. Kwon et al. show in a new Light:Science and Applications article that using an addit
MXenes, an emerging class of two-dimensional materials, exhibit characteristics that promise significant potential for their use in next generation optoelectronic sensors. An interplay between interband transitions and boundary effects offer the potential