论文部分内容阅读
在建立互高阶累积量的Yule Walker方程的基础上 ,通过特征分解 ,建立了噪声矢量空间和信号矢量空间 ,提出了在非相关噪声和相关高斯噪声下 ,正弦参数估计的互高阶谱最小范数法。通过仿真计算可知 ,该方法信噪比工作门限低 ,且具有较高的谱估计分辨率
Based on the Yule Walker equation of mutual cumulant cumulant, the noise vector space and the signal vector space are established by eigendecomposition. The results show that the cross-high order spectrum of the sinusoidal parameter estimation is the minimum under the uncorrelated noise and the correlated Gaussian noise Norm method. The simulation results show that this method has a low signal-to-noise ratio and a high spectral resolution