论文部分内容阅读
We introduced a dual electron accepting layer composed of tetrafluoro-tetracyanoquinodimethane(F4-TCNQ) and MoO3 for thermoelectric devices based on a pentacene layer. We found that the power factor is enhanced by placing an F4-TCNQ layer directly in contact with the pentacene layer and it is also enhanced by placing a MoO3 layer between the F4-TCNQ layer and the Au electrode. By examining the contact resistance using a field effect transistor and a hole-only diode, we confirmed that the hole injection is improved due to the reduction of contact resistance at the interface between the MoO3 layer and the Au electrode.
We introduced a dual electron accepting layer composed of tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) and MoO3 for thermoelectric devices based on a pentacene layer. We found that the power factor is enhanced by placing an F4-TCNQ layer directly in contact with the pentacene layer By examining the contact resistance using a field-effect transistor and a hole-only diode, we confirmed that the hole injection is improved due to the reduction of contact resistance at the interface between the MoO3 layer and the Au electrode.