论文部分内容阅读
多数入侵检测方法对训练数据集存在依赖,带标识的训练数据集在现实环境中难以被获取,无法保证所得标签数据能覆盖所有可能出现的攻击。该文提出基于无人监督聚类和混沌模拟退火算法的网络入侵检测方法,混沌模拟退火算法实现对聚类结果的优化,求得聚类的全局最优解,提高了数据分类的准确性和检测效率。在KDD CUP 1999上的仿真实验结果表明,该算法可实现预期效果。