论文部分内容阅读
研究短交通流量预测问题,短时交通流量数据中含有大量噪声,对预测精度产生不利影响,为了提高短交通流量预测精度,提出一种小波消噪的神经网络短时交通流量预测模型。首先采用小波技术对短时交通流量数据进行消噪处理,然后采用关联维数确定BP神经网络输人变量个数,最后采用BP神经网络建立短时交通流量预测模型。仿真结果表明,与消噪前比,消噪后模型的预测精度有了较显著提高,其预测误差远远小于消噪前,预测结果更具实用价格。