论文部分内容阅读
针对分布式发电在不同发展阶段可能存在不同的分布式电源(distributed generator,DG)投资主体,即配电运营商和用户,分别建立了考虑配电网运营商(distribution network operator,DNO)需求指标和用户需求指标的DG优化配置模型。针对不确定性对DG优化配置问题的影响,在建立相关概率模型的基础上,利用基于拉丁超立方抽样的蒙特卡罗模拟(Latin hypercube sampling based Monte Carlo simulation,LHS-MC)方法进行目标函数计算。模型求解中,采用非劣排序遗传算法(nondominated sorting genetic algorithm-II,NSGA-II)进行多目标优化计算。在获得不同模型下DG优化配置鲁棒解的基础上,提出一种整体化考虑DNO需求指标和用户需求指标的DG优化配置综合分析方法,使优化配置方案在整个发展阶段效益最优。采用33节点配电系统进行仿真,验证了所建DG优化配置模型和所提方法的有效性。
In view of the fact that there may be different investors of distributed generators (DG) in different stages of distributed generation, ie, distribution operators and users, the demand indicators of distribution network operator (DNO) And user demand indicators of the DG optimal allocation model. Aiming at the influence of uncertainty on the optimization of DG configuration, the objective function is calculated by using Latin hypercube sampling based Monte Carlo simulation (LHS-MC) based on the correlation probability model . In the model solving, nondominant sorting genetic algorithm (NSGA-II) is used to carry out multi-objective optimization calculation. Based on the robust solution of DG optimization under different models, this paper presents a comprehensive DG optimization configuration comprehensive analysis method considering the requirements of DNO and user requirements, so that the optimal allocation scheme has the best performance in the whole development stage. The 33-node power distribution system was used to simulate the validity of the proposed DG optimization configuration model and the proposed method.