Embrittlement Mechanism due to Slow Cooling During Quenching for M152 Martensitic Heat Resistant Ste

来源 :Journal of Iron and Steel Research(International) | 被引量 : 0次 | 上传用户:xiaoyao2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The mechanism of brittleness of M152 martensitic heat resistant steel due to slow cooling during quenching was experimentally investigated. The mechanical property tests and microstructure observation were conducted by TEM and XRD. The results showed that the presence of irreversible brittleness during slow cooling of quenching for M152 steel is attributed to the continuous M23C6 precipitation along prior austenite grain boundaries and M2C along prior residual austenite film. The residual austenite in the steel was unstable and decomposed after the precipitation of second phase during the process of slow cooling of quenching. The low cooling rate within the temperature range from 820 ℃ to 660 ℃ plays a key role in impact toughness, and the precipitation of second phase in the same temperature range results in irreversible brittleness. The mechanism of brittleness of M152 martensitic heat resistant steel due to slow cooling during quenching was experimentally investigated. The mechanical property tests and microstructure observations were conducted by TEM and XRD. The results showed that the presence of irreversible brittleness during slow cooling of quenching for M152 The is austenite in the steel was unstable and decomposed after the precipitation of second phase during the process of slow cooling of quenching. The low cooling rate within the temperature range from 820 ° C to 660 ° C plays a key role in impact toughness, and the precipitation of second phase in the same temperature range results in irreversible brittleness.
其他文献
心理健康问题已经成为当今社会关注的焦点,它严重威胁着家庭和睦与社会稳定.有心理危机的用户经常通过特定的社区论坛或者社交媒体来求助或倾述,这为用户心理危机识别开辟了
《网络安全法》是我国第一部关于网络安全的综合立法,与大众的互联网生活息息相关.因此,一款面向大众的《网络安全法》智能违法行为识别系统有助于规范互联网行为.然而,现有
建设“云海战略”是信息化时代发展的需要,是淮南市两型城市发展的需要,是新一轮产业发展的需要,是创新实践区本身建设的需要。 Construction “sea of ​​clouds strateg
微学习单元是微学习过程里的基本学习单位,具有高维性.提取微学习单元适合的特征,保留有代表性的特征,有助于降低冗余,是提高微学习聚类精度的重要方法之一.为获得适合的微学
量子搜索算法,相较于经典计算有着平方根的加速,在许多机器学习算法中都有广泛应用,如量子KNN算法、量子特征提取、量子主成分分析等.在目标分量占比较小的时候,量子搜索算法
作为目前最重要的中远红外光源,量子级联激光器(QCL)因独特的性能和频率可拓展至太赫兹(THz)的特点,成为研究的热点.对于QCL,影响其输出功率和工作温度的因素较多,其中高效散
为了解决被跟踪目标因尺度、形状变化导致的跟踪效果变差的问题,本文提出一种基于孪生区域候选网络的目标跟踪模型,对孪生区域候选网络(SiamRPN)优化,升级特征提取基准网络,采取多层特征融合模式,引入注意力机制模块增强位置特性和通道特性,并应用检测领域提出的GA-RPN替换原有的RPN(区域候选网络).OTB2015和VOT2018数据集的实验结果显示,本文模型对OTB2015数据集成功率为0.67
2011年8月9~13日,交通运输部党组副书记、副部长翁孟勇来内蒙古自治区视察工作,就中俄界河工作进行专题调研。他强调,中俄界河各项工作正面临着前所未有的机遇期、转型期。 F
近年来,图神经网络(Graph Neural Networks,GNNs)在网络表示学习领域中发挥着越来越重要的作用.然而,大多数现有的GNNs在每一层中只考虑节点的直接相连的(1阶)邻居,忽略了高
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.