论文部分内容阅读
通过滚动轴承模拟故障试验台,获取了滚动轴承外圈、内圈和滚动体不同剥落程度时的振动信号,并对故障程度的识别与诊断进行了探索。采用经验模态分解方法对轴承信号进行分解,得到其固有模态分量,然后将前8阶分量的有效值作为特征向量输入BP神经网络,进行故障程度识别与诊断,滚动轴承3种类型不同程度的故障被准确地区分出来。