【摘 要】
:
1 引言rn数学抽象作为数学产生和发展的思维基础,反映了数学的本质特征,是数学学科核心素养的重要组成部分[1 ] .数学抽象体现在数学概念和规则的获得过程中 .数学概念以高度
论文部分内容阅读
1 引言rn数学抽象作为数学产生和发展的思维基础,反映了数学的本质特征,是数学学科核心素养的重要组成部分[1 ] .数学抽象体现在数学概念和规则的获得过程中 .数学概念以高度概括的形式呈现、用抽象的语言表达,其形成过程一般是从直观的背景、具体的材料中抽离出数学对象的本质特征,再对抽象概括出的对象给予一般的意义和数学符号的表示,最后根据意义和符号得出结论形成概念 .正确理解抽象内容、合理设计建构过程是引导学生进行概念的意义建构的前提,也是发展学生数学抽象素养的关键 .
其他文献
一、教学内容及其解析rn(一)课标背景及备课思考rn精选课程内容,创设合适的教学情境,启发学生思考,引导学生把握数学内容的本质是高中数学课程标准的一个重要基本理念 .在学
行列式是沪教版(2007年)教材高二第一学期第九章第3节的内容.课本由线性方程组引入行列式的概念,展现行列式的工具作用,介绍了利用对角线法则求二阶行列式的值,即a bc d=ad-bc.历史上,1693年莱布尼兹给洛必达的信件中已用了行列式.但是行列式作为一个特定算式,学生无法理解为什么要学习这些概念以及行列式的运算法则.
在新课标的导航下,从“以教师为中心”到“以学生为主体”,一路走来,不少教师的观点发生了翻天覆地的变化,已经意识到课堂重心的转变势在必行 .然而这样的转变之下,如何看待
解析几何是高考中的重点和难点部分,其主要包括直线、圆、椭圆、双曲线以及抛物线等相关的数学知识 .其中直线的知识较为简单,圆的知识难度适中 .而利用椭圆、双曲线以及抛物
数学教学重在发展学生的思维,理想的数学课堂应该是学得主动、教得生动、氛围灵动的“三动课堂”.学得主动是“三动课堂”的根本指向,教得生动是必要支撑,氛围灵动是持续动力.“三动课堂”让数学课堂更加鲜活、更具创造性和生命力.
在初中数学教学中渗透模型思想是培养学生数学建模能力的有效途径.在方程起始教学中,使学生经历用数学语言表达数量关系、用数学符号建立方程的过程,体会模型思想尤为重要.结
数学抽象素养是学科育人目标中非常重要的内容,但在现实的课堂教学中并没有得到应有的重视.基于“四个理解”的理念,在理解数学的基础上,从“教”与“学”两个方面提出了数学
在《普通高中数学课程标准(2017年版)》中直观想象核心素养为核心素养体系的重要组成内容之一,而在数学学科中,直观想象核心素养尤为重要,对于学生数学思维的形成有着重要影响.通过直观想象核心素养的发展,学生还能够自觉将数学学科中几何直观想象与空间想象完美结合,是解决诸多数学问题的基础.因此,在高中数学教学中发展与培养学生直观想象核心素养备受教育领域关注.同时,要求高中数学教师在教学过程中有意识、有目的地渗透直观想象素养,并为学生提供发展直观想象素养的契机.基于此,文章结合笔者工作经验展开了高中数学教学实践中
因为种种原因,不少数学新授课上成了“一个定义,三项注意,大量练习”式的习题课.如何把一些内容看似简单的数学课上出“数学味”,这是值得研究的问题.比如有理数减法(第1课时),可以引导学生从不同角度解释有理数减法法则从何而来,在法则归纳、概括与说理上要舍得花时间,这是培养学生逻辑推理素养的教学指向.
1基本情况1.1授课对象学生来自四星级重点高中普通班高一年级,数学基础较好,有较强的逻辑推理能力、运算能力和创新能力.1.2教材分析所用教材为苏教版《普通高中教科书·数学必修第一册》2020年7月第1版.学生刚步入高中阶段,学习了第一章集合、第二章常用逻辑用语和第三章第一节不等式的基本性质,本节课的授课内容延续了第一节的内容,主要为第二节基本不等式√ab≤a+b 2(a,b≥0)的证明.基本不等式是不等关系中的常见模型,苏教版新教材将其安排在高一刚入学不久学习,可以看出基本不等式作为高中数学的预备知识之一