论文部分内容阅读
在医学图像融合过程中,传统多尺度分析方法多采用线性滤波器,由于无法保留图像边缘特征导致分解阶段的强边缘处出现模糊,从而产生光晕。为提高融合图像的视觉感知效果,通过结合多尺度边缘保持分解方法与脉冲耦合神经网络(PCNN),提出一种新的图像融合方法。对源图像进行加权最小二乘滤波分解得到图像的基础层和细节层,采用高斯滤波器对基础层进行二次分解得到低频层和边缘层,将分解过程中每级边缘层和细节层叠加构建高频层,并引入非下采样方向滤波器组进行方向分析。在此基础上,利用改进的空间频率以及区域能量激励PCNN融合高