论文部分内容阅读
为解决1-v-r和1-v-1支持向量机中存在的拒识区域问题,提出一种加权k近邻法。该方法计算落入拒识区域中的样本,即拒识样本到所有训练样本的距离,选择最近的k个样本为拒识样本的类别投票,并根据距离大小进行加权,得票多的类即拒识样本的所属类。实验结果表明,加权k近邻法实现了零拒识,提高了传统多分类支持向量机的分类性能。