论文部分内容阅读
基于协同过滤的推荐系统容易受到托攻击的危害,如何检测托攻击成为推荐系统可靠性的关键.针对现有托攻击检测手段使用基于评分的分类特征易受混淆技术干扰的局限,本文从用户选择评分项目方式入手,分析由此造成的用户概貌中已评分项目的流行度分布情况的不同,提出用于区分正常用户与虚假用户基于流行度的分类特征,进而得到基于流行度的托攻击检测算法.实验表明该算法在托攻击检测中具有更强的检测性能与抗干扰性.