论文部分内容阅读
针对传统粒子群方法求解相机内参时的局部最优解问题,提出一种基于全参数自适应调节和变异机制的粒子群单目相机内参优化方法,首先,基于向量约束关系对单应性矩阵进行变形,利用最小二乘法求得相机的初始内参,然后,考虑在迭代过程中局部最优粒子、全局最优粒子对各个粒子的作用不同,分别给出了基于粒距的自适应的局部因子学习调节策略和全局因子学习调节策略;同时,设计了基于粒子群平均粒距的改进的粒子自适应变异率.最后,给出了基于全参数的自适应变异机制的粒子群相机内参优化算法.实验结果表明,与张正友标定方法、传统粒子群优化标定方法相比,该方法具有较好的标定精度和收敛速度.