论文部分内容阅读
针对BP神经网络多变量输入难以确定的缺点,提出了采用灰色关联分析法确定主要影响因子输入的多因子灰色关联分析神经网络预测模型,实例证明,该方法预测精度优于全输入BP神经网络预测。进一步提出了应用选优BP神经网络输入预测和GM(1,N)组合预测的模型,它结合了灰预测利用少数据累加生成建模,容易找出数据变换规律的特点和神经网络能很好地非线性逼近,又需要较全数据的特点。实证研究结果表明,该组和网络模型获得了更准确的预测值,模型新颖,具有更好的预测精度,可广泛应用于各种预测研究,有较高的推广价值。