论文部分内容阅读
压缩采样匹配追踪(CoSaMP)算法的性能受初始支撑集选择的制约,初始支撑集选择不准确不仅影响重构精度,还会降低重构速度。针对该问题,将图像在稀疏域的结构特性引入到CoSaMP算法中,提出了支撑集相似度的概念;利用数字图像相邻行之间原子支撑集的相似性,提出了基于行间支撑集相似度的CoSaMP算法。实验结果表明,在同等采样率的条件下,与传统的CoSaMP算法相比,所提算法在不增加算法时间复杂度的同时提高了重构质量,峰值信噪比提高了0.6~2.5dB。