论文部分内容阅读
Ion irradiation of polymers can induce irreversible changes in their macroscopic properties such as electrical and optical properties and the surface-related mechanical properties. Electronic excitation, ionization, chains scission, cross-links and mass losses are accepted as the fundamental events that give rise to the observed macroscopic changes. Detailed and systematic study of radiation induced effects in polymers enriches not only the knowledge of ion-material interactions but also supplies new bases for polymeric materials synthesis through ion-beam technologies. Previous work has concentrated mainly on effects induced by low-ionization particles such as γ-rays and electrons. Since 1980,s the application of high energy heavy ion accelerators enables the use of high energy heavy ion as an irradiation source, and many new and exciting effects and phenomena have been revealed.Energetic heavy ions in matter lose energy mainly through electronic excitation and ionization. Compared to low-ionization particles, high energy heavy ion possesses higher LET(linear energy transfer) values which can reach several to several tens keV/nm. As most of the primary ionizations and excitations occur close to the ion trajectory in a core of a few nanometers in diameter, a continuous damaged zone along the ion path can be induced,in which all bonds inside the zone can be destroyed due to the high rate energy deposition. Studies on this particularity of high energy heavy ion irradiation and its effects in materials will cause great influence on industry as well as on our daily life.The previous work has revealed the great difference in the effects induced by high energy heavy ions compared to the other particles. It has been shown that under irradiation with lower LET particles gas release depends on molecular structure and material composition, whereas under irradiation with high LET particles, such as high energy heavy ions, it is not the case. Some materials that undergo degradation under γ-irradiation can be cross-linked by irradiation with high energy heavy ions. In some cases new molecular structures were induced by high energy heavy ions with sufficiently high LET values. In recent years we have irradiated polyethylterephthalate (PET), polystyrene (PS), polycarbonate (PC) and polyimide (PI) with high energy Ar, Kr, Xe and U ion beams.Chemical and physical changes of the materials induced by the high energy heavy ion beams were investigated by Fourier-transform infrared ray spectroscopy, ultraviolet and visible transmission spectroscopy and X-ray diffraction measurements, from which damage cross-sections of various functional groups were determined[1]. An energy loss threshold for damage of phenyl ring in PET has been derived and difference in amorphization of PET under high and low LET irradiations was observed. It is found that alkyne end groups can be induced in all the materials above a certain electronic energy loss threshold, which is found to be about 0.8 keV/nm for PS and 0.4 keV/nm for PC. The production cross-section of alkyne end group increases with increasing electronic energy loss and shows saturation at high electronic energy loss values.